Part Number Hot Search : 
M16G45 ADIS1 UVCJ78 192L712 P3601MSH EPM712 74479142 FM48T
Product Description
Full Text Search
 

To Download SI5324B-C-GM Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  rev. 1.0 1/13 copyright ? 2013 by silicon laboratories si5324 si5324 features applications description the si5324 is a low-bandwidth, jitter-att enuating, precision clock multiplier for applications requiring sub 1 ps jitter performance with loop bandwidths between 4 hz and 525 hz. the si5324 accepts two input clocks ranging from 2 khz to 710 mhz and generates two output clocks ranging from 2 khz to 945 mhz and select frequencies to 1.4 ghz. the two outputs are divided down separately from a common source. the si5324 can also use its external reference as a clock source for frequency synthesis. the device provides virtually any frequency translation combination across this operating range. the si5324 input clock frequency and clock multiplication ratio are programmable via an i 2 c or spi interface. the si5324 is based on silicon laboratories' 3rd-generation dspll ? technology, which provides any-frequency synthesis and jitter attenuation in a highly integrated pll solution that eliminates the need for external vcxo and filter components. the dspll loop bandwidth is digitall y programmable, providing jitter performance optimization at the applicat ion level. the si5324 is ideal for providing clock multiplication and ji tter attenuation in high performance timing applications. ? generates any frequency from 2 khz to 945 mhz and select frequencies to 1.4 ghz from an input frequency of 2 khz to 710 mhz ? ultra-low jitter clock outputs as low as 290 fs rms (12 khz?20 mhz), 320 fs rms (50 khz?80 mhz) ? integrated loop filter with selectable loop bandwidth (4? 525 hz) ? meets itu-t g.8251 and telcordia gr-253-core jitter specification ? hitless input clo ck switching with phase build-out ? freerun, digital hold operation ? configurable signal format per output (lvpecl, lvds, cml, cmos) ? support for itu g.709 and custom fec ratios (255/238, 255/237, 255/236, 239/237, 66/64, 239/238, 15/14, 253/221, 255/238) ? lol, los, fos alarm outputs ? i 2 c or spi programmable ? on-chip voltage regulator with high psnr ? single supply 1.8 5%, 2.5 10%, or 3.3 v 10% ? small size: 6 x 6 mm 36-lead qfn ? pb-free, rohs-compliant ? broadcast video ?3g /hd/sd-sdi, genlock ? packet optical transport systems (p-ots), mspp ? otn/otu-1/2/3/4 asynchronous demapping (gapped clock) ? sonet oc-48/192/768, sdh/stm-16/64/256 line cards ? 1/2/4/8/10g fibre channel line cards ? gbe/10/40/100g synchronous ethernet (lan/wan) ? data converter clocking ? wireless base stations ? test and measurement a ny -f requency p recision c lock m ultiplier / j itter a ttenuator ordering information: see page 63. pin assignments 1 2 3 29 30 31 32 33 34 35 36 20 21 22 23 24 25 26 27 10 11 12 13 14 15 16 17 4 5 6 7 8 nc nc rst c2b int_c1b gnd vdd xa vdd rate0 ckin2+ ckin2? nc rate1 ckin1+ ckin1? cs_ca scl sda_sdo a1 a2_ss sdi ckout1? nc gnd vdd nc ckout2? ckout2+ cmode gnd pad a0 gnd 9 18 19 28 xb lol gnd ckout1+
si5324 2 rev. 1.0 functional block diagram dspll ? loss of signal/ frequency offset xtal or refclock ckout2 ckin1 ckout1 ckin2 n31 n2 nc1_ls nc2_ls skew adjust signal detect device interrupt vdd (1.8, 2.5, or 3.3 v) gnd n32 loss of lock clock select i 2 c/spi port control rate select n1_hs xtal/refclock
si5324 rev. 1.0 3 t able of c ontents section page 1. electrical specificat ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 2. typical application ci rcuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 6 3. functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18 3.1. external reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2. additional docum entation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.3. typical phase noise perf ormance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20 4. register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5. register descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25 5.1. ical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 6. pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 7. ordering guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 8. package outline: 36-pin qfn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 9. pcb land pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67 10. top marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69 10.1. si5324 top marking (qfn) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 10.2. top marking explana tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 document change list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 contact information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72
si5324 4 rev. 1.0 1. electrical specifications figure 1. differential voltage characteristics figure 2. rise/fall time characteristics table 1. recommended operating conditions parameter symbol test condition min typ max unit ambient temperature t a -40 25 85 c supply voltage during normal operation v dd 3.3 v nominal 2.97 3.3 3.63 v 2.5 v nominal 2.25 2.5 2.75 v 1.8 v nominal 1.71 1.8 1.89 v note: all minimum and maximum specifications are guaranteed and apply across the recommended operating conditions. typical values apply at nominal supply voltages and an operating temperature of 25 oc unless otherwise stated. v ise , v ose v id ,v od differential i/os v icm , v ocm single-ended peak-to-peak voltage differential peak-to-peak voltage signal + signal ? (signal +) ? (signal ?) v t signal + signal ? v id = (signal+) ? (signal?) v icm , v ocm t f t r 80% 20% ckin, ckout
si5324 rev. 1.0 5 table 2. dc characteristics (v dd = 1.8 5%, 2.5 10%, or 3.3 v 10%, t a = ?40 to 85 c) parameter symbol test condition min typ max unit supply current 1 i dd lvpecl format 622.08 mhz out both ckouts enabled ?251 279 ma lvpecl format 622.08 mhz out 1 ckout enabled ?217 243 ma cmos format 19.44 mhz out both ckouts enabled ?204 234 ma cmos format 19.44 mhz out 1 ckout enabled ?194 220 ma disable mode ? 165 ? ma ckinn input pins 2 input common mode voltage (input thresh- old voltage) v icm 1.8 v 5% 0.9 ? 1.4 v 2.5 v 10% 1 ? 1.7 v 3.3 v 10% 1.1 ? 1.95 v input resistance ckn rin single-ended 20 40 60 k ? single-ended input voltage swing (see absolute specs) v ise f ckin < 212.5 mhz see figure 1. 0.2 ? ? v pp f ckin > 212.5 mhz see figure 1. 0.25 ? ? v pp differential input voltage swing (see absolute specs) v id f ckin < 212.5 mhz see figure 1. 0.2 ? ? v pp fckin > 212.5 mhz see figure 1. 0.25 ? ? v pp notes: 1. current draw is independent of supply voltage 2. no under- or overshoot is allowed. 3. lvpecl outputs require nominal vdd 2.5 v. 4. this is the amount of leakage that the 3-level inputs can tolerate from an external driver. see si53xx family reference manual for more details. 5. lvpecl, cml, lvds and low-swing lvds measured with fo = 622.08 mhz.
si5324 6 rev. 1.0 output clocks (ckoutn) 3,5 common mode cko vcm lvpecl 100 ? load line- to-line v dd ? 1.42 ?v dd ?1.25 v differential output swing cko vd lvpecl 100 ? load line- to-line 1.1 ? 1.9 v pp single ended output swing cko vse lvpecl 100 ? load line- to-line 0.5 ? 0.93 v pp differential output voltage cko vd cml 100 ? load line-to- line 350 425 500 mv pp common mode output voltage cko vcm cml 100 ? load line-to- line ?v dd -0.36 ? v differential output voltage cko vd lvds 100 ? load line-to-line 500 700 900 mv pp low swing lvds 100 ? load line-to-line 350 425 500 mv pp common mode output voltage cko vcm lvds 100 ?? load line-to- line 1.125 1.2 1.275 v differential output resistance cko rd cml, lvpecl, lvds ? 200 ? ? output voltage low cko vollh cmos ? ? 0.4 v output voltage high cko vohlh v dd =1.71v cmos 0.8 x v dd ??v table 2. dc characteristics (continued) (v dd = 1.8 5%, 2.5 10%, or 3.3 v 10%, t a = ?40 to 85 c) parameter symbol test condition min typ max unit notes: 1. current draw is independent of supply voltage 2. no under- or overshoot is allowed. 3. lvpecl outputs require nominal vdd ? 2.5 v. 4. this is the amount of leakage that the 3-level inputs can tolerate from an external driver. see si53xx family reference manual for more details. 5. lvpecl, cml, lvds and low-swing lvds measured with fo = 622.08 mhz.
si5324 rev. 1.0 7 output driv e current (cmos driving into cko vol for output low or cko voh for output high. ckout+ and ckout? shorted externally) cko io icmos[1:0] = 11 v dd =1.8v ?7.5 ? ma icmos[1:0] = 10 v dd =1.8v ?5.5 ? ma icmos[1:0] = 01 v dd =1.8v ?3.5 ? ma icmos[1:0] = 00 v dd =1.8v ?1.75 ? ma icmos[1:0] = 11 v dd =3.3v ?32 ? ma icmos[1:0] = 10 v dd =3.3v ?24 ? ma icmos[1:0] = 01 v dd =3.3v ?16 ? ma icmos[1:0] = 00 v dd =3.3v ?8 ? ma 2-level lvcmos input pins input voltage low v il v dd =1.71v ? ? 0.5 v v dd =2.25v ? ? 0.7 v v dd =2.97v ? ? 0.8 v input voltage high v ih v dd =1.89v 1.4 ? ? v v dd =2.25v 1.8 ? ? v v dd =3.63v 2.5 ? ? v table 2. dc characteristics (continued) (v dd = 1.8 5%, 2.5 10%, or 3.3 v 10%, t a = ?40 to 85 c) parameter symbol test condition min typ max unit notes: 1. current draw is independent of supply voltage 2. no under- or overshoot is allowed. 3. lvpecl outputs require nominal vdd 2.5 v. 4. this is the amount of leakage that the 3-level inputs can tolerate from an external driver. see si53xx family reference manual for more details. 5. lvpecl, cml, lvds and low-swing lvds measured with fo = 622.08 mhz.
si5324 8 rev. 1.0 3-level input pins 4 input voltage low v ill ? ? 0.15 x v dd v input voltage mid v imm 0.45 x v dd ?0.55xv dd v input voltage high v ihh 0.85 x v dd ??v input low current i ill see note 4 ?20 ? ? a input mid current i imm see note 4 ?2 ? +2 a input high current i ihh see note 4 ? ? 20 a lvcmos output pins output voltage low v ol io = 2 ma v dd =1.71v ?? 0.4 v output voltage low io = 2 ma v dd =2.97v ?? 0.4 v output voltage high v oh io = ?2 ma v dd =1.71v v dd ? 0.4 ??v output voltage high io = ?2 ma v dd =2.97v v dd ? 0.4 ??v table 2. dc characteristics (continued) (v dd = 1.8 5%, 2.5 10%, or 3.3 v 10%, t a = ?40 to 85 c) parameter symbol test condition min typ max unit notes: 1. current draw is independent of supply voltage 2. no under- or overshoot is allowed. 3. lvpecl outputs require nominal vdd 2.5 v. 4. this is the amount of leakage that the 3-level inputs can tolerate from an external driver. see si53xx family reference manual for more details. 5. lvpecl, cml, lvds and low-swing lvds measured with fo = 622.08 mhz.
si5324 rev. 1.0 9 table 3. ac characteristics (v dd = 1.8 5%, 2.5 10%, or 3.3 v 10%, t a = ?40 to 85 c) parameter symbol test condition min typ max unit single-ended reference clock input pin xa (xb with cap to gnd) input resistance xa rin rate[1:0] = lm, ml, mh, or hm, ac coupled ?12? k ? input voltage swing xa vpp rate[1:0] = lm, ml, mh, or hm, ac coupled 0.5 ? 1.2 v pp differential reference cl ock input pins (xa/xb) input voltage swing xa/xb vpp rate[1:0] = lm, ml, mh, or hm 0.5 ? 2.4 v pp ckinn input pins input frequency ckn f 0.002 ? 710 mhz input duty cycle (minimum pulse width) ckn dc whichever is smaller (i.e., the 40% / 60% limitation applies only to high frequency clocks) 40 ? 60 % 2??ns input capacitance ckn cin ?? 3 pf input rise/fall time ckn trf 20?80% see figure 2 ??11 ns ckoutn output pins (see ordering section for speed grade vs frequency limits) output frequency (output not configured for cmos or disabled) cko f n1 ? 60.002?945mhz n1 = 5 970 ? 1134 mhz n1 = 4 1.213 ? 1.4 ghz maximum output frequency in cmos format cko f ? ? 212.5 mhz notes: 1. input to output phase skew after an ical is not controlled and can assume any value. 2. lock and settle time performance is dependent on the frequency plan and the xaxb reference frequency. please visit the silicon labs technical support web page at: https://www.silabs.com/support/pag es/contacttechnicalsupport.aspx to submit a technical support request regarding the lock time of your frequency plan.
si5324 10 rev. 1.0 output rise/fall (20?80 %) @ 622.08 mhz output cko trf output not configured for cmos or disabled see figure 2 ?230350 ps output rise/fall (20?80%) @ 212.5 mhz output cko trf cmos output v dd =1.71 c load =5 pf ?? 8 ns output rise/fall (20?80%) @ 212.5 mhz output cko trf cmos output v dd =2.97 c load =5 pf ?? 2 ns output duty cycle uncertainty @ 622.08 mhz cko dc 100 ? load line-to-line measured at 50% point (not for cmos) ??+/-40ps lvcmos input pins minimum reset pulse width t rstmn 1 s reset to microproces- sor access ready t ready 10 ms lvcmos output pins rise/fall times t rf c load =20pf see figure 2 ?25? ns losn trigger window los trig from last ckinn ?? to ? internal detection of losn n3 ? 1 ? ? 4.5 x n3 t ckin time to clear lol after los cleared t clrlol ? los to ? lol fold = fnew stable xa/xb reference ?10?ms table 3. ac characteristics (continued) (v dd = 1.8 5%, 2.5 10%, or 3.3 v 10%, t a = ?40 to 85 c) parameter symbol test condition min typ max unit notes: 1. input to output phase skew after an ical is not controlled and can assume any value. 2. lock and settle time performance is dependent on the frequency plan and the xaxb reference frequency. please visit the silicon labs technical support web page at: https://www.silabs.com/support/pag es/contacttechnicalsupport.aspx to submit a technical support request regarding the lock time of your frequency plan.
si5324 rev. 1.0 11 device skew output clock skew t skew ? of ckoutn to ? of ckout_m, ckoutn and ckout_m at same frequency and signal format phaseoffset =0 ckout_always_on =1 sq_ical =1 ??100ps phase change due to temperature variation 1 t temp max phase changes from ?40 to +85 c ?300500 ps pll performance (fin = fout = 622.08 mhz; bw = 7 hz ; lvpecl, xaxb = 114.285 mhz) lock time 2 t lockmp start of ical to ?? of lol ? 0.8 1.0 s settle time 2 t settle start of ical to fout within 5 ppm of final value ?4.25.0 s output clock phase change t p_step after clock switch f3 ? 128 khz ?200? ps closed loop jitter peaking j pk ?0.050.1 db jitter tolerance j tol jitter frequency ?? loop bandwidth 5000/bw ? ? ns pk-pk phase noise fout = 622.08 mhz cko pn 100 hz offset ? ?90 ? dbc/hz 1 khz offset ? ?106 ? dbc/hz 10 khz offset ? ?121 ? dbc/hz 100 khz offset ? ?132 ? dbc/hz 1 mhz offset ? ?132 ? dbc/hz subharmonic noise sp subh phase noise @ 100 khz offset ??88?76dbc spurious noise sp spur max spur @ n x f3 (n ? 1, n x f3 < 100 mhz) ??93?70dbc table 3. ac characteristics (continued) (v dd = 1.8 5%, 2.5 10%, or 3.3 v 10%, t a = ?40 to 85 c) parameter symbol test condition min typ max unit notes: 1. input to output phase skew after an ical is not controlled and can assume any value. 2. lock and settle time performance is dependent on the frequency plan and the xaxb reference frequency. please visit the silicon labs technical support web page at: https://www.silabs.com/support/pag es/contacttechnicalsupport.aspx to submit a technical support request regarding the lock time of your frequency plan.
si5324 12 rev. 1.0 table 4. microprocessor control (v dd = 1.8 5%, 2.5 10%, or 3.3 v 10%, t a = ?40 to 85 c) parameter symbol test condition min typ max unit i 2 c bus lines (sda, scl) input voltage low vil i2c ? ? 0.25 x v dd v input voltage high vih i2c 0.7 x v dd ?v dd v hysteresis of schmitt trigger inputs vhys i2c v dd = 1.8v 0.1 x v dd ?? v v dd = 2.5 or 3.3 v 0.05 x v dd ?? v output voltage low vol i2c v dd =1.8v io = 3 ma ? ? 0.2 x v dd v v dd = 2.5 or 3.3 v io = 3 ma ?? 0.4 v
si5324 rev. 1.0 13 spi specifications duty cycle, sclk t dc sclk = 10 mhz 40 ? 60 % cycle time, sclk t c 100 ? ? ns rise time, sclk t r 20?80% ? ? 25 ns fall time, sclk t f 20?80% ? ? 25 ns low time, sclk t lsc 20?20% 30 ? ? ns high time, sclk t hsc 80?80% 30 ? ? ns delay time, sclk fall to sdo active t d1 ?? 25 ns delay time, sclk fall to sdo transition t d2 ?? 25 ns delay time, ss rise to sdo tri-state t d3 ?? 25 ns setup time, ss to sclk fall t su1 25 ? ? ns hold time, ss to sclk rise t h1 20 ? ? ns setup time, sdi to sclk rise t su2 25 ? ? ns hold time, sdi to sclk rise t h2 20 ? ? ns delay time between slave selects t cs 25 ? ? ns table 4. microprocessor control (continued) (v dd = 1.8 5%, 2.5 10%, or 3.3 v 10%, t a = ?40 to 85 c) parameter symbol test condition min typ max unit
si5324 14 rev. 1.0 table 5. jitter generation parameter symbol test condition * min typ max gr-253- specification unit measurement filter dspll bw 2 jitter gen oc-192 jgen 0.02?80 mhz 120 hz ? 4.2 6.2 30 ps pp ?.27.42 n/a ps rms 4?80 mhz 120 hz ? 3.7 6.4 10 ps pp ? .14 0.31 n/a ps rms 0.05?80 mhz 120 hz ? 4.4 6.9 10 ps pp ? .26 0.41 1.0 ps rms jitter gen oc-48 jgen 0.12?20 mhz 120 hz ? 3.5 5.4 40.2 ps pp ? .27 0.41 4.02 ps rms *note: test conditions: 1. fin = fout = 622.08 mhz 2. clock input: lvpecl 3. clock output: lvpecl 4. pll bandwidth: 120 hz 5. 114.285 mhz 3rd ot crystal used as xa/xb input 6. v dd =2.5v 7. t a =85c table 6. thermal characteristics (v dd = 1.8 5%, 2.5 10%, or 3.3 v 10%, t a = ?40 to 85 c) parameter symbol test condition value unit thermal resistance junction to ambient ? ja still air 32 c/w thermal resistance junction to case ? jc still air 14 c/w
si5324 rev. 1.0 15 table 7. absolute maximum ratings* parameter symbol test condition min typ max unit dc supply voltage v dd ?0.5 ? 3.8 v lvcmos input voltage v dig ?0.3 v dd +0.3 v ckinn voltage level limits ckn vin 0?v dd v xa/xb voltage level limits xa vin 0?1.2v operating junction temperature t jct ?55 ? 150 oc storage temperature range t stg ?55 ? 150 oc esd hbm tolerance (100 pf, 1.5 k ? ); all pins except ckin+/ckin? 2??kv esd mm tolerance; all pins except ckin+/ckin? 150 ? ? v esd hbm tolerance (100 pf, 1.5 k ? ); ckin+/ckin? 750 ? ? v esd mm tolerance; ckin+/ckin? 100 ? ? v latch-up tolerance jesd78 compliant *note: permanent device damage may occur if the absolute maximum ratings are exceeded. functional operation should be restricted to the conditions specified in the operation sections of this data s heet. exposure to absolute maximum rating conditions for extended periods of time may affect device reliability.
si5324 16 rev. 1.0 2. typical application circuits figure 3. si5324 typical application circuit (i 2 c control mode) gnd pad si5324 int_c1b c2b lol rst ckout1+ ckout1? vdd gnd ferrite bead system power supply c 1 c 2 c 3 serial data serial clock reset interrupt/ckin_1 invalid indicator ckin_2 invalid indicator pll loss of lock indicator clock outputs ckout2+ ckout2? sda scl i2c interface serial port address a[2:0] cmode control mode (l) 100 ? 0.1 f 0.1 f + ? 100 ? 0.1 f 0.1 f + ? c 4 0.1 f 0.1 f 0.1 f 1 f clock select/clock active cs_ca 1. assumes differential lvpecl termination (3.3 v) on clock inputs. 2. denotes tri-level input pins with states designated as l (ground), m (vdd/2), and h (vdd). notes: xa xb refclk+ option 2: 0.1 f refclk? 0.1 f rate[1:0] 2 crystal/ref clk rate v dd 15 k ? 15 k ? xa xb 114.285 mhz crystal option 1: input clock sources* ckin2+ ckin2? 130 ? 130 ? 82 ? 82 ? v dd = 3.3 v 130 ? 130 ? 82 ? 82 ? v dd = 3.3 v ckin1+ ckin1? gnd pad
si5324 rev. 1.0 17 figure 4. si5324 typical application circuit (spi control mode) si5324 rst ckout1+ ckout1? vdd gnd ferrite bead system power supply c 1 c 2 c 3 reset clock outputs ckout2+ ckout2? cmode control mode (h) ckin2+ ckin2? 100 ? 0.1 f 0.1 f + ? 100 ? 0.1 f 0.1 f + ? c 4 0.1 f 0.1 f 0.1 f 1 f ckin1+ ckin1? int_c1b c2b spi interface lol interrupt/clkin_1 invalid indicator clkin_2 invalid indicator pll loss of lock indicator serial data out serial data in sdo sdi serial clock sclk slave select ss clock select/clock active cs_ca gnd pad 1. assumes differential lvpecl termination (3.3 v) on clock inputs. 2. denotes tri-level input pins with states designated as l (ground), m (vdd/2), and h (vdd). notes: input clock sources* 130 ? 130 ? 82 ? 82 ? v dd = 3.3 v 130 ? 130 ? 82 ? 82 ? v dd = 3.3 v xa xb refclk+ option 2: 0.1 f refclk? 0.1 f rate[1:0] 2 crystal/ref clk rate v dd 15 k ? 15 k ? xa xb 114.285 mhz crystal option 1:
si5324 18 rev. 1.0 3. functional description figure 5. si5324 functional block diagram the si5324 is a low loop bandwidth, jitter-attenuating clock multiplier for high performance applications. the si5324 accepts two input clocks ranging from 2 khz to 710 mhz and generates two ou tput clocks ranging from 2 khz to 945 mhz and select frequencies to 1.4 ghz. the si5324 can also use its external reference as a clock source for frequen cy synthesis. the device provides virtually any frequency translation combination across this operating range. independent dividers are available for each input clock and output clock, so the si5324 can accept input clocks at different frequencies and it can generate outpu t clocks at different frequencies. the si5324 input clock frequency and clock multiplication ratio are programmable through an i 2 c or spi interface. silicon laboratories offers a pc- based software utility, dspll sim , that can be used to determine the optimum pll divider settings for a given input frequency/clock multip lication ratio combination that minimizes phase noise and power consumption. this utility can be downloaded from http://www.silabs.com/timing . the si5324 is based on s ilicon laboratories' 3rd- generation dspll ? technology, which provides any- frequency synthesis and jitter attenuation in a highly integrated pll solution that eliminates the need for external vcxo and loop filter components. the si5324 pll loop bandwidth is digitally programmable and supports a range from 4 hz to 525 hz. a fast lock feature is available to reduce lock times inherent with low loop bandwidth plls. the dspll sim software utility can be used to calcul ate valid loop bandwidth settings for a given input clock frequency/clock multiplication ratio. the si5324 supports hitless switching between the two synchronous input clocks in compliance with telcordia gr-253-core that greatly minimizes the propagation of phase transients to the clock outputs during an input clock transition (maximum 200 ps phase change). manual and automatic revertive and non-revertive input clock switching options are available. the si5324 monitors both input clocks for loss-of-signal (los) and provides a los alarm when it detects missing pulses on either input clock. the device monitors the lock status of the pll. the lock detect algorithm works by continuously monitoring the phase of the input clock in relation to the phase of the feedback clock. due to the low loop bandwidth of the part, the lol indicator clears before the loop fully settles. the si5324 also monitors frequency offset alarms (fos), which indicate if an input clock is within a specified frequency ppm accuracy relative to the frequency of an xa/xb reference clock. both stratum 3/3e and sonet minimum clock (smc) fos thresholds are supported. the si5324 provides a digital hold capability that allows the device to continue generation of a stable output clock when the selected inpu t reference is lost. during digital hold, the dspll generates an output frequency based on a historical average frequency that existed a fixed amount of time before the error event occurred, eliminating the effects of phase and frequency transients that may occur immediately preceding digital hold. dspll ? loss of signal/ frequency offset xtal or refclock ckout2 ckin1 ckout1 ckin2 n31 n2 nc1_ls nc2_ls skew adjust signal detect device interrupt vdd (1.8, 2.5, or 3.3 v) gnd n32 loss of lock clock select i 2 c/spi port control rate select n1_hs xtal/refclock
si5324 rev. 1.0 19 the si5324 has two differential clock outputs. the signal format of each clock output is independently programmable to support lvpecl, lvds, cml, or cmos loads. when configured for cmos, four clock outputs are available. if not required, the second clock output can be powered down to minimize power consumption. in addition, the phase of one output clock may be adjusted in relation to the phase of the other output clock. the resolution varies from 800 ps to 2.2 ns depending on the pll divider settings. the dspll sim software utility determines th e phase offset resolution for a given combination of input clock and multiplication ratio. for system-level deb ugging, a bypass mode is available which drives the output clock directly from the input clock, bypassing the internal dspll. the device is powered by a single 1.8, 2.5, or 3.3 v supply with best- in-class psnr. 3.1. external reference an external, high quality 38.88 mhz clock or a low-cost 114.285 mhz 3rd overtone crystal or external reference is used as part of a fixed- frequency oscillator within the dspll. this external reference is required for the device to perform jitter attenuation. specific recommendations can be found in the family reference manual. in digital hold, the dspll remains locked and tracks the external reference. note that crystals can have temperature sensitivities. due to the low bandwidth ca pabilities of this part, any low-frequency wander or instability on the external reference will transfer to the output clocks. to address this issue, a stable external reference, txco, ocxo, or thermally-isolated crystal is recommended. for example, with a 20 ppm o scillator as the reference on the xa/xb pins, temperature changes cause the oscillator to change frequen cy slightly. although the si5324 is locked to its input on clkin, it also uses the xa/xb as a reference. if there is a need to use a reference oscillator instead of a crystal, silicon labs d oes not recommend using mems based oscillators. instead, silicon labs recommends the si530eb121m109dg, which is a very low-jitter/wander, lvpecl, 2. 5 v crystal oscillator. the very low loop bw of the si5324 means that it can be susceptible to xaxb referenc e sources that have high wander. experience has shown that in spite of having low jitter, some mems oscillators have high wander, and these devices should be avoided. contact silicon labs for details. 3.2. additional documentation consult the silicon labo ratories any-frequency precision clock family re ference manual (frm) for detailed information about the si5324. additional design support is available from silicon laborat ories through your distributor. silicon laboratories offers a pc-based software utility called dspll sim to simplify device configuration, including frequency planning and loop bandwidth selection. the frm and th is utility can be downloaded from http://www.silabs.com/timing .
si5324 20 rev. 1.0 3.3. typical phase noise performance figure 6. broadcast video table 8. broadcast video jitter 1 jitter bandwidth 2 jitter (peak-peak) jitter (rms) 10 hz to 20 mhz 5.24 ps 484 fs notes: 1. number of samples: 8.91e9. 2. jitter integration bands include low-pass (?20 db/dec) and hi-pass (?60 db/dec) roll- offs per telecordia gr-253-core.
si5324 rev. 1.0 21 figure 7. otn/sonet/sdh phase noise note: phase noise plot uses brick wall integration. table 9. sonet jitter jitter bandwidth * jitter, rms sonet_oc48, 12 khz to 20 mhz 266 fs sonet_oc192_a, 20 khz to 80 mhz 283 fs sonet_oc192_b, 4 mhz to 80 mhz 155 fs sonet_oc192_c, 50 khz to 80 mhz 275 fs brick wall_800 hz to 80 mhz 287 fs *note: jitter integration bands include low-pass ( ?20 db/dec) and hi-pass (?60 db/dec) roll-offs per telecordia gr-253-core.
si5324 22 rev. 1.0 figure 8. wireless base station phase noise table 10. wireless base station jitter* jitter bandwidth jitter (peak-peak) jitter (rms) 10 hz to 20 mhz 7.28 ps 581 fs note: number of samples: 8.91e9
si5324 rev. 1.0 23 4. register map all register bits that are not defined in this map shou ld always be written with the specified reset values. the writing to these bits of values other than the specif ied reset values may result in undefined device behavior. registers not listed, e.g. register 64, should never be written to. register d7 d6 d5 d4 d3 d2 d1 d0 0 free_run ckout_ always_on bypass_reg 1 ck_prior2[1:0] ck_prior1[1:0] 2 bwsel_reg[3:0] 3 cksel_reg[1:0] dhold sq_ical 4 autosel_reg[1:0] hst_del[4:0] 5 icmos[1:0] 6 sfout2_reg[2:0} sfout1_reg[2:0] 7 fosrefsel[2:0] 8 hlog_2[1:0] hlog_1[1:0] 9 hist_avg[4:0] 10 dsbl2_ reg dsbl1_ reg 11 pd_ck2 pd_ck1 19 fos_en fos_thr[1:0] valtime[1:0] lock[t2:0] 20 ck2_bad_pin ck1_ bad_ pin lol_pin int_pin 21 ck1_actv_pin cksel_pin 22 ck_actv_ pol ck_bad_ pol lol_pol int_pol 23 los2_msk los1_msk losx_msk 24 fos2_msk fos1_msk lol_msk 25 n1_hs[2:0] 31 nc1_ls[19:16] 32 nc1_ls[15:8] 33 nc1_ls[7:0] 34 nc2_ls[19:16] 35 nc2_ls[15:8] 36 nc2_ls[7:0] 40 n2_hs[2:0] n2_ls[19:16] 41 n2_ls[15:8] 42 n2_ls[7:0] 43 n31[18:16] 44 n31[15:8] 45 n31[7:0] 46 n32[18:16]
si5324 24 rev. 1.0 47 n32[15:8] 48 n32[7:0] 55 clkin2rate[2:0] clkin1rate[2:0] 128 ck2_actv_reg ck1_actv_reg 129 los2_int los1_int losx_int 130 dighold- valid fos2_int fos1_int lol_int 131 los2_flg los1_flg losx_flg 132 fos2_flg fos1_flg lol_flg 134 partnum_ro[11:4] 135 partnum_ro[3:0] revid_ro[3:0] 136 rst_reg ical 137 fastlock 138 los2_en [1:1] los1_en [1:1] 139 los2_en[0:0] los1_en[0:0] fos2_en fos1_en 142 independentskew1[7:0] 143 independentskew2[7:0] table 11. ckout_always_on and sq_ical truth table ckout_always_on sq_ical results 0 0 ckout off until after the first ical 0 1 ckout off until after the first successful ical (i.e., when lol is low) 1 0 ckout always on, including during an ical 1 1 ckout always on, including during an ical. use these settings to pr eserve output-to-output skew register d7 d6 d5 d4 d3 d2 d1 d0
si5324 rev. 1.0 25 5. register descriptions reset value = 0001 0100 register 0. bitd7 d6 d5 d4d3d2 d1 d0 name free_run ckout_ always_on bypass_ reg type r r/w r/w r r r r/w r bit name function 7 reserved reserved. 6free_run free run. internal to the device, route xa/xb to ckin2. this allows the device to lock to its xa-xb reference. 0: disable 1: enable 5ckout_ always_on ckout always on. this will bypass the sq_ical func tion. output will be availabl e even if sq_ical is on and ical is not complete or successful. see table 11 on page 24. 0: squelch output until pa rt is calibrated (ical). 1: provide an output. notes: 1. the frequency may be significantly off until the part is calibrated. 2. must be 1 to control output to output skew. 4:2 reserved reserved. 1 bypass_ reg bypass register. this bit enables or disables the pll bypass mode. use only when the device is in digital hold or before the first ical. bypass mo de is not supported for cmos output clocks. 0: normal operation 1: bypass mode. selected input clock is c onnected to ckout buffers, bypassing pll. 0 reserved reserved.
si5324 26 rev. 1.0 reset value = 1110 0100 reset value = 0100 0010 register 1. bitd7d6d5d4 d3 d2 d1 d0 name ck_prior2 [1:0] ck_prior1 [1:0] type rrrr r/w r/w bit name function 7:4 reserved reserved. 3:2 ck_prior2 [1:0] ck_prior 2. selects which of the input clocks will be 2nd priority in the autose lection state machine. 00: ckin1 is 2nd priority. 01: ckin2 is 2nd priority. 10: reserved 11: reserved 1:0 ck_prior1 [1:0] ck_prior 1. selects which of the input clocks will be 1st priority in the autose lection state machine. 00: ckin1 is 1st priority. 01: ckin2 is 1st priority. 10: reserved 11: reserved register 2. bit d7d6d5d4d3d2d1d0 name bwsel_reg [3:0] type r/w rrrr bit name function 7:4 bwsel_reg [3:0] bwsel_reg. selects nominal f3db bandwidth for pll. see the dspllsim for settings. after bwsel_reg is written with a new value, an ical is required for the change to take effect. 3:0 reserved reserved.
si5324 rev. 1.0 27 reset value = 0000 0101 register 3. bitd7d6d5d4d3d2d1d0 name cksel_reg [1:0] dhold sq_ical type r/w r/w r/w r r r r bit name function 7:6 cksel_reg [1:0] cksel_reg. if the device is operating in regi ster-based manual clock selection mode (autosel_reg = 00), and cksel_pin = 0, then these bits select which input clock will be the active input clock. if ckse l_pin = 1 and autosel_reg = 00, the cs_ca input pin continues to co ntrol clock selection and cksel_reg is of no consequence . 00: ckin_1 selected. 01: ckin_2 selected. 10: reserved 11: reserved 5 dhold dhold. forces the part into digital hold. this bit overrides all other manual and automatic clock selection controls. 0: normal operation. 1: force digital hold mode. over rides all other settings and ignores the quality of all of the input clocks. 4 sq_ical sq_ical. this bit determines if the output clocks will remain enabled or be squelched (disabled) during an internal calibration. see table 11 on page 24. 0: output clocks enabled during ical. 1: output clocks disabled during ical. 3:0 reserved reserved.
si5324 28 rev. 1.0 reset value = 0001 0010 reset value = 1110 1101 register 4. bitd7d6d5d4d3d2d1d0 name autosel_reg [1:0] hist_del [4:0] type r/w r r/w bit name function 7:6 autosel_ reg [1:0] autosel_reg [1:0] . selects method of input clock selection to be used. 00: manual (either register or pin controlled, see cksel_pin) 01: automatic non-revertive 10: automatic revertive 11: reserved 5 reserved reserved. 4:0 hist_del [4:0] hist_del [4:0]. selects amount of delay to be used in generating the history information used for digital hold. register 5. bitd7d6d5d4d3d2d1d0 name icmos [1:0] type r/w rrrrrr bit name function 7:6 icmos [1:0] icmos [1:0]. when the output buffer is set to cmos mode, these bits determine the output buffer drive strength. the first number below refers to 3.3 v operation; the second to 1.8 v operation. these values assume ckout+ is tied to ckout-. 00: 8ma/2ma. 01: 16ma/4ma 10: 24ma/6ma 11: 32ma/8ma 5:0 reserved reserved.
si5324 rev. 1.0 29 reset value = 0010 1101 register 6. bitd7d6d5d4d3d2d1d0 name sfout2_reg [2:0] sfout1_reg [2:0] type rr r/w r/w bit name function 7:6 reserved reserved. 5:3 sfout2_ reg [2:0] sfout2_reg [2:0]. controls output signal format and disable for ckout2 output buffer. bypass mode is not supported for cmos output clocks. 000: reserved 001: disable 010: cmos 011: low swing lvds 100: reserved 101: lvpecl 110: cml 111: lvds 2:0 sfout1_ reg [2:0] sfout1_reg [2:0]. controls output signal format and disable for ckout1 output buffer. bypass mode is not supported for cmos output clocks. 000: reserved 001: disable 010: cmos 011: low swing lvds 100: reserved 101: lvpecl 110: cml 111: lvds
si5324 30 rev. 1.0 reset value = 0010 1010 register 7. bitd7d6d5d4d3d2d1d0 name fosrefsel [2:0] type rrrrr r/w bit name function 7:3 reserved. reserved. 2:0 fosrefsel [2:0] fosrefsel [2:0]. selects which input clock is used as the reference frequency fo r frequency off-set (fos) alarms. 000: xa/xb (external reference) 001: ckin1 010: ckin2 011: reserved 100: reserved 101: reserved 110: reserved 111: reserved
si5324 rev. 1.0 31 reset value = 0000 0000 reset value = 1100 0000 register 8. bitd7d6d5d4d3d2d1d0 name hlog_2[1:0] hlog_1[1:0] type r/w r/w rrrr bit name function 7:6 hlog_2 [1:0] hlog_2 [1:0]. 00: normal operation 01: holds ckout2 output at static logic 0. entrance and exit from this state will oc cur without glitches or runt pulses. 10:holds ckout2 output at static logic 1. entrance and exit from this state will oc cur without glitches or runt pulses. 11: reserved 5:4 hlog_1 [1:0] hlog_1 [1:0]. 00: normal operation 01: holds ckout1 output at static logic 0. entrance and exit from this state will oc cur without glitches or runt pulses. 10: holds ckout1 output at static logic 1. entrance and exit from this state will oc cur without glitches or runt pulses. 11: reserved 3:0 reserved reserved. register 9. bitd7d6d5d4d3d2d1d0 name hist_avg [4:0] type r/w rrr bit name function 7:3 hist_avg [4:0] hist_avg [4:0]. selects amount of averaging time to be used in generating the history information for digital hold. 2:0 reserved reserved.
si5324 32 rev. 1.0 reset value = 0000 0000 reset value = 0100 0000 register 10. bit d7d6d5d4 d3 d2 d1 d0 name dsbl2_reg dsbl1_reg type rrrr r/w r/w r r bit name function 7:4 reserved reserved. 3 dsbl2_reg dsbl2_reg. this bit controls the powerdown of the ck out2 output buffer. if disable mode is selected, the nc2_ls output divider is also powered down. 0: ckout2 enabled. 1: ckout2 disabled. 2 dsbl1_reg dsbl1_reg. this bit controls the powerdown of the ck out1 output buffer. if disable mode is selected, the nc1_ls output divider is also powered down. 0: ckout1 enabled. 1: ckout1 disabled. 1:0 reserved reserved. register 11. bitd7d6d5d4d3d2 d1 d0 name pd_ck2 pd_ck1 type rrrrrrr/wr/w bit name function 7:2 reserved reserved. 1pd_ck2 pd_ck2. this bit controls the powerdown of the ckin2 input buffer. 0: ckin2 enabled. 1: ckin2 disabled. 0pd_ck1 pd_ck1. this bit controls the powerdown of the ckin1 input buffer. 0: ckin1 enabled. 1: ckin1 disabled.
si5324 rev. 1.0 33 reset value = 0010 1100 register 19. bitd7d6d5d4d3d2d1d0 name fos_en fos_thr [1:0] valti me [1:0] lockt [2:0] type r/w r/w r/w r/w bit name function 7fos_en fos_en. frequency offset enable globally disables fos. see the individual fos enables (fos- x_en, register 139). 0: fos disable 1: fos enabled by fosx_en 6:5 fos_thr [1:0] fos_thr [1:0]. frequency offset at which fos is declared: 00: 11 to 12 ppm (stratum 3/3e compliant, with a stratum 3/3e used for refclk 01: 48 to 49 ppm (smc) 10: 30 ppm (sonet minimum clock (smc), with a stratum 3/3e used for refclk. 11: 200 ppm 4:3 valtime [1:0] valtime [1:0]. sets amount of time for input clock to be valid before the associated alarm is removed. 00: 2 ms 01: 100 ms 10: 200 ms 11: 13 seconds 2:0 lockt [2:0] lockt [2:0]. sets retrigger interval for one shot monitoring phase detector output. one shot is trig- gered by phase slip in dspll. refer to the family reference manual for more details. to minimize lock time, the value 001 for lockt is recommended. 000: 106 ms 001: 53 ms 010: 26.5 ms 011: 13.3 ms 100: 6.6 ms 101: 3.3 ms 110: 1.66 ms 111: .833 ms
si5324 34 rev. 1.0 reset value = 0011 1110 register 20. bitd7d6d5d4 d3 d2 d1 d0 name ck2_bad_pin ck1_bad_pin lol_pin int_pin type r r r r r/w r/w r/w r/w bit name function 7:4 reserved reserved. 3 ck2_bad_pin ck2_bad_pin. the ck2_bad status can be reflected on the c2b output pin. 0: c2b output pin tristated 1: c2b status reflected to output pin 2 ck1_bad_pin ck1_bad_pin. the ck1_bad status can be reflected on the c1b output pin. 0: c1b output pin tristated 1: c1b status reflected to output pin 1lol_pin lol_pin. the lol_int status bit can be reflected on the lol output pin. 0: lol output pin tristated 1: lol_int status reflected to output pin 0int_pin int_pin. reflects the interrupt status on the int_c1b output pin. 0: interrupt status not displayed on int_ c1b output pin. if ck1_bad_pin = 0, int_c1b output pin is tristated. 1: interrupt status reflected to output pin. instead, the int_c1b pin indicates when ckin1 is bad.
si5324 rev. 1.0 35 reset value = 1111 1111 register 21. bitd7d6d5d4d3d2 d1 d0 name ck1_actv_pin cksel_ pin type rrrrrr r/w r/w bit name function 7:2 reserved reserved. 1 ck1_actv_pin ck1_actv_pin. the ck1_actv_reg status bit can be reflec ted to the cs_ca output pin using the ck1_actv_pin enable function. ck1_actv_pin is of consequence only when pin controlled clock selectio n is not being used. 0: cs_ca output pin tristated. 1: clock active status reflected to output pin. 0 cksel_pin cksel_pin. if manual clock selection is being used, clock selection can be controlled via the cksel_reg[1:0] register bits or the cs_ca in put pin. this bit is only active when autosel_reg = manual. 0: cs_ca pin is ignored. cksel_reg[1:0] register bits control clock selection. 1: cs_ca input pin controls clock selection.
si5324 36 rev. 1.0 reset value = 1101 1111 register 22. bitd7d6d5d4 d3 d2 d1 d0 name ck_actv_pol ck_bad_ pol lol_pol int_pol type r r r r r/w r/w r/w r/w bit name function 7:4 reserved reserved. 3 ck_actv_ pol ck_actv_pol. sets the active polarity for the cs_ca signals when reflected on an output pin. 0: active low 1: active high 2 ck_bad_ pol ck_bad_pol. sets the active polarity fo r the int_c1b and c2b signals when reflected on output pins. 0: active low 1: active high 1 lol_pol lol_pol. sets the active polarity for the lol status when reflected on an output pin. 0: active low 1: active high 0int_pol int_pol. sets the active polarity fo r the interrupt status when reflected on the int_c1b out- put pin. 0: active low 1: active high
si5324 rev. 1.0 37 reset value = 0001 1111 register 23. bitd7d6d5d4d3 d2 d1 d0 name los2_ msk los1_ msk losx_ msk type rrrrr r/w r/w r/w bit name function 7:3 reserved reserved. 2los2_msk los2_msk. determines if a los on ckin2 (los2_flg) is used in the generation of an interrupt. writes to this register do not change the value held in the los2_flg register. 0: los2 alarm triggers active interr upt on int_c1b output (if int_pin=1). 1: los2_flg ignored in generating interrupt output. 1los1_msk los1_msk. determines if a los on ckin1 (los1_flg) is used in the generation of an interrupt. writes to this register do not change the value held in the los1_flg register. 0: los1 alarm triggers active interr upt on int_c1b output (if int_pin=1). 1: los1_flg ignored in generating interrupt output. 0losx_msk losx_msk. determines if a los on xa/ xb(losx_flg) is used in the generation of an interrupt. writes to this register do not change the value held in the losx_flg register. 0: losx alarm triggers active interrup t on int_c1b output (if int_pin=1). 1: losx_flg ignored in generating interrupt output.
si5324 38 rev. 1.0 reset value = 0011 1111 register 24. bitd7d6d5d4d3 d2 d1 d0 name fos2_msk fos1_msk lol_msk type rrrrr r/w r/w r/w bit name function 7:3 reserved reserved. 2 fos2_msk fos2_msk. determines if the fos2 _flg is used to in the generation of an interrupt. writes to this register do not change the value held in the fos2_flg register. 0: fos2 alarm triggers active interr upt on int_c1b output (if int_pin=1). 1: fos2_flg ignored in generating interrupt output. 1 fos1_msk fos1_msk. determines if the fos1_flg is used in the gen eration of an interrupt. writes to this reg- ister do not change the value held in the fos1_flg register. 0: fos1 alarm triggers active interr upt on int_c1b output (if int_pin=1). 1: fos1_flg ignored in generating interrupt output. 0lol_msk lol_msk. determines if the lol_flg is used in the generation of an interrupt. writes to this regis- ter do not change the value held in the lol_flg register. 0: lol alarm triggers active interrup t on int_c1b output (if int_pin=1). 1: lol_flg ignored in generating interrupt output.
si5324 rev. 1.0 39 reset value = 0010 0000 reset value = 0000 0000 register 25. bitd7d6d5d4d3d2d1d0 name n1_hs [2:0] type r/w rrrrr bit name function 7:5 n1_hs [2:0] n1_hs [2:0]. sets value for n1 high speed divider which drives ncn_ls (n = 1 to 2) low-speed divider. 000: n1= 4 001: n1= 5 010: n1=6 011: n1= 7 100: n1= 8 101: n1= 9 110: n1= 10 111: n1= 11 4:0 reserved reserved. register 31. bitd7d6d5d4d3d2d1d0 name nc1_ls [19:16] type rrrr r/w bit name function 7:4 reserved reserved. 3:0 nc1_ls [19:16] nc1_ls [19:16]. sets value for nc1 low-speed divider, which drives ckout1 output. must be 0 or odd. 00000000000000000000 = 1 00000000000000000001 = 2 00000000000000000011 = 4 00000000000000000101 = 6 ... 11111111111111111111=2^20 valid divider values=[1, 2, 4, 6, ..., 2^20]
si5324 40 rev. 1.0 reset value = 0000 0000 reset value = 0011 0001 register 32. bitd7d6d5d4d3d2d1d0 name nc1_ls [15:8] type r/w bit name function 7:0 nc1_ls [15:8] nc1_ls [15:8]. sets value for nc1 low-speed divider, which drives ckout1 output. must be 0 or odd. 00000000000000000000 = 1 00000000000000000001 = 2 00000000000000000011 = 4 00000000000000000101 = 6 ... 11111111111111111111=2^20 valid divider values=[1, 2, 4, 6, ..., 2^20] register 33. bitd7d6d5d4d3d2d1d0 name nc1_ls [7:0] type r/w bit name function 7:0 nc1_ls [19:0] nc1_ls [7:0]. sets value for nc1 low-speed divider, which drives ckout1 output. must be 0 or odd. 00000000000000000000 = 1 00000000000000000001 = 2 00000000000000000011 = 4 00000000000000000101 = 6 ... 11111111111111111111=2^20 valid divider values=[1, 2, 4, 6, ..., 2^20]
si5324 rev. 1.0 41 reset value = 0000 0000 reset value = 0000 0000 register 34. bitd7d6d5d4d3d2d1d0 name nc2_ls [19:16] type rrrr r/w bit name function 7:4 reserved reserved. 3:0 nc2_ls [19:16] nc2_ls [19:16]. sets value for nc2 low-speed divider, which drives ckout2 output. must be 0 or odd. 00000000000000000000=1 00000000000000000001=2 00000000000000000011=4 00000000000000000101=6 ... 11111111111111111111=2^20 valid divider values=[1, 2, 4, 6, ..., 2^20] register 35. bitd7d6d5d4d3d2d1d0 name nc2_ls [15:8] type r/w bit name function 7:0 nc2_ls [15:8] nc2_ls [15:8] . sets value for nc2 low-speed divider, which drives ckout2 output. must be 0 or odd. 00000000000000000000 = 1 00000000000000000001 = 2 00000000000000000011 = 4 00000000000000000101 = 6 ... 11111111111111111111=2^20 valid divider values=[1, 2, 4, 6, ..., 2^20]
si5324 42 rev. 1.0 reset value = 0011 0001 register 36. bitd7d6d5d4d3d2d1d0 name nc2_ls [7:0] type r/w bit name function 7:0 nc2_ls [7:0] nc2_ls [7:0]. sets value for nc2 low-speed divider, which drives ckout2 output. must be 0 or odd. 00000000000000000000 = 1 00000000000000000001 = 2 00000000000000000011 = 4 00000000000000000101 = 6 ... 11111111111111111111 = 2 20 valid divider values = [1, 2, 4, 6, ..., 2 20 ]
si5324 rev. 1.0 43 reset value = 1100 0000 register 40. bitd7d6d5d4d3d2d1d0 name n2_hs [2:0] n2_ls [19:16] type r/w r r/w bit name function 7:5 n2_hs [2:0] n2_hs [2:0]. sets value for n2 high speed divider which drives n2ls low-speed divider. 000: 4 001: 5 010: 6 011: 7 100: 8 101: 9 110: 10 111: 11 4 reserved reserved. 3:0 n2_ls [19:16] n2_ls [19:16]. sets value for n2 low-speed divider, which drives phase detector. 00000000000000000001 = 2 00000000000000000011 = 4 00000000000000000101 = 6 ... 11111111111111111111 = 2 20 valid divider values = [2, 4, 6, ..., 2 20 ]
si5324 44 rev. 1.0 reset value = 0000 0000 reset value = 1111 1001 register 41. bitd7d6d5d4d3d2d1d0 name n2_ls [15:8] type r/w bit name function 7:0 n2_ls [15:8] n2_ls [15:8]. sets value for n2 low-speed divider, which drives phase detector. 00000000000000000001 = 2 00000000000000000011 = 4 00000000000000000101 = 6 ... 11111111111111111111 = 2 20 valid divider values = [2, 4, 6, ..., 2 20 ] register 42. bitd7d6d5d4d3d2d1d0 name n2_ls [7:0] type r/w bit name function 7:0 n2_ls [7:0] n2_ls [7:0]. sets value for n2 low-speed divider, which drives phase detector. 00000000000000000001 = 2 00000000000000000011 = 4 00000000000000000101 = 6 ... 11111111111111111111 = 2 20 valid divider values = [2, 4, 6, ..., 2 20 ]
si5324 rev. 1.0 45 reset value = 0000 0000 reset value = 0000 0000 register 43. bitd7d6d5d4d3d2d1d0 name n31 [18:16] type rrrrr r/w bit name function 7:3 reserved reserved. 2:0 n31 [18:16] n31 [18:16]. sets value for input divider for ckin1. 0000000000000000000 = 1 0000000000000000001 = 2 0000000000000000010 = 3 ... 1111111111111111111 = 2 19 valid divider values = [1, 2, 3, ..., 2 19 ] register 44. bitd7d6d5d4d3d2d1d0 name n31_[15:8] type r/w bit name function 7:0 n31_[15:8] n31_[15:8]. sets value for input divider for ckin1. 0000000000000000000 = 1 0000000000000000001 = 2 0000000000000000010 = 3 ... 1111111111111111111 = 2 19 valid divider values = [1, 2, 3, ..., 2 19 ]
si5324 46 rev. 1.0 reset value = 0000 1001 reset value = 0000 0000 register 45. bitd7d6d5d4d3d2d1d0 name n31_[7:0] type r/w bit name function 7:0 n31_[7:0 n31_[7:0]. sets value for input divider for ckin1. 0000000000000000000 = 1 0000000000000000001 = 2 0000000000000000010 = 3 ... 1111111111111111111 = 2 19 valid divider values = [1, 2, 3, ..., 2 19 ] register 46. bitd7d6d5d4d3d2d1d0 name n32_[18:16] type rrrrr r/w bit name function 7:3 reserved reserved. 2:0 n32_[18:16] n32_[18:16]. sets value for input divider for ckin2. 0000000000000000000 = 1 0000000000000000001 = 2 0000000000000000010 = 3 ... 1111111111111111111 = 2 19 valid divider values = [1, 2, 3, ..., 2 19 ]
si5324 rev. 1.0 47 reset value = 0000 0000 reset value = 0000 1001 register 47. bitd7d6d5d4d3d2d1d0 name n32_[15:8] type r/w bit name function 7:0 n32_[15:8] n32_[15:8]. sets value for input divider for ckin2. 0000000000000000000 = 1 0000000000000000001 = 2 0000000000000000010 = 3 ... 1111111111111111111 = 2 19 valid divider values = [1, 2, 3, ..., 2 19 ] register 48. bitd7d6d5d4d3d2d1d0 name n32_[7:0] type r/w bit name function 7:0 n32_[7:0] n32_[7:0]. sets value for input divider for ckin2. 0000000000000000000 = 1 0000000000000000001 = 2 0000000000000000010 = 3 ... 1111111111111111111 = 2 19 valid divider values = [1, 2, 3, ..., 2 19 ]
si5324 48 rev. 1.0 reset value = 0000 0000 register 55. bitd7d6d5d4d3d2d1d0 name clkin2rate_[2:0] clkin1rate[2:0] type rr r/w r/w bit name function 7:6 reserved reserved. 5:3 clkin2rate[2:0] clkin2rate_[2:0]. ckinn frequency selection for fos alarm monitoring. 000: 10?27 mhz 001: 25?54 mhz 002: 50?105 mhz 003: 95?215 mhz 004: 190?435 mhz 005: 375?710 mhz 006: reserved 007: reserved 2:0 clkin1rate [2:0] clkin1rate[2:0]. ckinn frequency selection for fos alarm monitoring. 000: 10?27 mhz 001: 25?54 mhz 002: 50?105 mhz 003: 95?215 mhz 004: 190?435 mhz 005: 375?710 mhz 006: reserved 007: reserved
si5324 rev. 1.0 49 reset value = 0010 0000 reset value = 0000 0110 register 128. bitd7d6d5d4d3d2 d1 d0 name ck2_actv_reg ck1_actv_reg type rrrrrr r r bit name function 7:2 reserved reserved. 1ck2_actv_reg ck2_actv_reg. indicates if ckin2 is currently the active clock for the pll input. 0: ckin2 is not the active input clock. eith er it is not selected or los2_int is 1. 1: ckin2 is the active input clock. 0ck1_actv_reg ck1_actv_reg. indicates if ckin1 is currently the active clock for the pll input. 0: ckin1 is not the active input clock. eith er it is not selected or los1_int is 1. 1: ckin1 is the active input clock. register 129. bitd7d6d5d4d3 d2 d1 d0 name los2_int los1_int losx_int type rrrrr r r r bit name function 7:3 reserved reserved. 2 los2_int los2_int. indicates the los status on ckin2. 0: normal operation. 1: internal loss-of-signal alarm on ckin2 input. 1 los1_int los1_int. indicates the los status on ckin1. 0: normal operation. 1: internal loss-of-signal alarm on ckin1 input. 0 losx_int losx_int. indicates the los status of the exte rnal reference on the xa/xb pins. 0: normal operation. 1: internal loss-of-signal alarm on xa/xb reference clock input.
si5324 50 rev. 1.0 reset value = 0000 0001 register 130. bit d7 d6 d5 d4 d3 d2 d1 d0 name digholdvalid fos2_int fos1_int lol_int type rrrrrrrr bit name function 7 reserved reserved. 6digholdvalid digital hold valid. indicates if the digital hold circuit has enough samples of a valid clock to meet dig- ital hold specifications. 0: indicates digital hold history register s have not been filled. the digital hold output frequency may not meet specifications. 1: indicates digital hold hist ory registers have been fille d. the digital hold output frequency is valid. 5:3 reserved reserved. 2 fos2_int ckin2 frequency offset status. 0: normal operation. 1: internal frequency offset alarm on ckin2 input. 1 fos1_int ckin1 frequency offset status. 0: normal operation. 1: internal frequency offset alarm on ckin1 input. 0 lol_int pll loss of lock status. 0: pll locked. 1: pll unlocked.
si5324 rev. 1.0 51 reset value = 0001 1111 register 131. bitd7d6d5d4d3d2 d1 d0 name los2_flg los1_flg losx_flg type rrrrrr/wr/wr/w bit name function 7:3 reserved reserved. 2los2_flg ckin2 loss-of-signal flag. 0: normal operation. 1: held version of los2_int. generates active output interrupt if output interrupt pin is enabled (int_pin = 1) and if not masked by lo s2_msk bit. flag cleared by writing 0 to this bit. 1los1_flg ckin1 loss-of-signal flag. 0: normal operation 1: held version of los1_int. generates active output interrupt if output interrupt pin is enabled (int_pin = 1) and if not masked by lo s1_msk bit. flag cleared by writing 0 to this bit. 0 losx_flg external reference (signal on pins xa/xb) loss-of-signal flag. 0: normal operation 1: held version of losx_int. ge nerates active output interrupt if output interrupt pin is enabled (int_pin = 1) and if not masked by losx_msk bit. flag cleared by writing 0 to this bit.
si5324 52 rev. 1.0 reset value = 0000 0010 register 132. bitd7d6d5d4 d3 d2 d1d0 name fos2_flg fos1_flg lol_flg type rrrrr/wr/wr/wr bit name function 7:4 reserved reserved. 3fos2_flg clkin_2 frequency offset flag. 0: normal operation. 1: held version of fos2_int. generates active output interrupt if output interrupt pin is enabled (int_pin = 1) and if not masked by fo s2_msk bit. flag cleared by writing 0 to this bit. 2fos1_flg clkin_1 frequency offset flag. 0: normal operation 1: held version of fos1_int. generates active output interrupt if output interrupt pin is enabled (int_pin = 1) and if not masked by fo s1_msk bit. flag cleared by writing 0 to this bit. 1lol_flg pll loss of lock flag. 0: pll locked 1: held version of lol_int. generates active output interrupt if output interrupt pin is enabled (int_pin = 1) and if not masked by lo l_msk bit. flag cleared by writing 0 to this bit. 0 reserved reserved.
si5324 rev. 1.0 53 reset value = 0000 0001 reset value = 1000 0010 register 134. bitd7d6d5d4d3d2d1d0 name partnum_ro [11:4] type r bit name function 7:0 partnum_ro [11:0] device id (1 of 2). 0000 0001 1000: si5324 others reserved register 135. bitd7d6d5d4d3d2d1d0 name partnum_ro [3:0] revid_ro [3:0] type rr bit name function 7:4 partnum_ro [11:0] device id (2 of 2). 0000 0001 1000: si5324 others reserved 3:0 revid_ro [3:0] indicates revision number of device. 0010: revision c others reserved.
si5324 54 rev. 1.0 reset value = 0000 0000 register 136. bitd7d6d5d4d3d2d1d0 name rst_reg ical type r / wr / wrrrrrr bit name function 7 rst_reg internal reset (same as pin reset). note: the i 2 c (or spi) port may not be accessed until 10 ms after rst_reg is asserted. 0: normal operation. 1: reset of all internal logic. outputs disabled or tristated during reset. 6ical start an internal calibration sequence. for proper operation, the device must go through an internal calibration sequence. ical is a self-clearing bit. writing a one to this location initiate s an ical. the calibra- tion is complete once the lol alarm goes low. a valid stable clock (within 100 ppm) must be present to begin ical. note: any divider, clkinn_rate or bwsel _reg changes require an ical to take effect. 0: normal operation. 1: writing a "1" initiates intern al self-calibration. upon comp letion of internal self-cali- bration, lol will go low. 5:0 reserved reserved.
si5324 rev. 1.0 55 reset value = 0000 0000 reset value = 0000 1111 register 137. bitd7d6d5d4d3d2d1d0 name fastlock type rrrrrrrr/w bit name function 7:1 reserved do not modify. 0 fastlock this bit must be set to 1 to enable fastlock. this improves initial lock time by dynamically changing the loop bandwidth. register 138. bit d7d6d5d4d3d2 d1 d0 name los2_en [1:1] los1_en [1:1] type rrrrrr r/w r/w bit name function 7:2 reserved reserved. 1 los2_en [1:0] enable ckin2 los monitoring on the specified input (2 of 2). note: los2_en is split betw een two registers. 00: disable los monitoring. 01: reserved. 10: enable losa monitoring. 11: enable los monitoring. losa is a slower and less sensitive versio n of los. see the family reference manual for details. 0 los1_en [1:0] enable ckin1 los monitoring on the specified input (1 of 2). note: los1_en is split betw een two registers. 00: disable los monitoring. 01: reserved. 10: enable losa monitoring. 11: enable los monitoring. losa is a slower and less sensitive versio n of los. see the family reference manual for details.
si5324 56 rev. 1.0 reset value = 1111 1111 register 139. bit d7 d6 d5 d4 d3 d2 d1 d0 name los2_en [0:0] los1_en [0:0] fos2_en fos1_en type r r r/w r/w r r r/w r/w bit name function 7:6 reserved reserved. 5 los2_en [1:0] enable ckin2 los monitoring on the specified input (2 of 2). note: los2_en is split between two registers. 00: disable los monitoring. 01: reserved. 10: enable losa monitoring. 11: enable los monitoring. losa is a slower and less sensitive versio n of los. see the family reference manual for details. 4 los_en [1:0] enable ckin1 los monitoring on the specified input (1 of 2). note: los1_en is split between two registers. 00: disable los monitoring. 01: reserved. 10: enable losa monitoring. 11: enable los monitoring. losa is a slower and less sensitive version of los. see the family reference manual for details. 3:2 reserved reserved. 1fos2_en enables fos on a per channel basis. 0: disable fos monitoring. 1: enable fos monitoring. 0fos1_en enables fos on a per channel basis. 0: disable fos monitoring. 1: enable fos monitoring.
si5324 rev. 1.0 57 reset value = 0000 0000 reset value = 0000 0000 register 142. bitd7d6d5d4d3d2d1d0 name independentskew1 [7:0] type r/w bit name function 7:0 independentskew1 [7:0] independentskew1. 8 bit field that represents a twos complement of the phase offset in terms of clocks from the high speed output divider. default = 0. register 143. bitd7d6d5d4d3d2d1d0 name independentskew2 [7:0] type r/w bit name function 7:0 independentskew2 [7:0] independentskew2. 8 bit field that represents a twos comp lement of the phase offset in terms of clocks from the high speed output divider. default = 0.
si5324 58 rev. 1.0 5.1. ical the device's registers must be configured for the intended applications. after the part is configured, the part must perform a calibration procedure when there is a stable clock on the selected clkinn input. the calibration process is triggered by writing a "1" to bit d6 in register 136. se e the family reference manual for details. in addition, after a successful calibration operation, chan ging any of the registers indicated in table 12 requires that a calibration be performed again by the same procedure (writing a "1" to bit d6 in register 136). table 12. ical-sensitive registers address register 0 bypass_reg 0 ckout_always_on 1 ck_prior1 1 ck_prior2 2 bwsel_reg 4h i s t _ d e l 5i c m o s 7f o s r e f s e l 9h i s t _ a v g 10 dsbl1_reg 10 dsbl2_reg 11 pd_ck1 11 pd_ck2 19 fos_en 19 fos_thr 19 lockt 19 valtime 25 n1hs 31 nc1_ls 34 nc2_ls 40 n2_hs 40 n2_ls 43 n31 46 n32 55 clkin1rate 55 clkin2rate
si5324 rev. 1.0 59 6. pin descriptions pin # pin name i/o signal level description 1 rst ilvcmos external reset. active low input that performs ex ternal hardware reset of device. resets all internal logic to a known state and forces the device reg- isters to their default value. clock outputs are disabled during reset. the part must be programmed after a reset or power-on to get a clock output. see family reference manual for details. this pin has a weak pull-up. 2, 9, 14, 30, 33 nc no connection. leave floating. make no external connections to this pin for normal operation. 3 int_c1b o lvcmos interrupt/ckin1 invalid indicator. this pin functions as a device inte rrupt output or an alarm output for ckin1. if used as an interrupt output, int_pin must be set to 1. the pin functions as a maskable interrupt output with active polarity con- trolled by the int_pol register bit. if used as an alarm output, the pin functions as a los (and option- ally fos) alarm indicator for ckin1. set ck1_bad_pin = 1 and int_pin =0. 0 = ckin1 present. 1 = los (fos) on ckin1. the active polarity is controlled by ck_bad_pol . if no function is selected, the pin tristates. note: internal register names are indi cated by underlined italics, e.g., int_pin . see si5324 register map. 1 2 3 29 30 31 32 33 34 35 36 20 21 22 23 24 25 26 27 10 11 12 13 14 15 16 17 4 5 6 7 8 nc nc rst c2b int_c1b gnd vdd xa vdd rate0 ckin2+ ckin2? nc rate1 ckin1+ ckin1? cs_ca scl sda_sdo a1 a2_ss sdi ckout1? nc gnd vdd nc ckout2? ckout2+ cmode gnd pad a0 gnd 9 18 19 28 xb lol gnd ckout1+
si5324 60 rev. 1.0 4c2bolvcmos ckin2 invalid indicator. this pin functions as a los (and optionally fos) alarm indicator for ckin2 if ck2_bad_pin = 1. 0 = ckin2 present. 1 = los (fos) on ckin2. the active polarity can be changed by ck_bad_pol. if ck2_bad_pin = 0, the pin tristates. 5, 10, 32 v dd v dd supply supply. the device operates from a 1.8, 2.5, or 3.3 v supply. bypass capac- itors should be associated with the following vdd pins: 50.1f 10 0.1 f 32 0.1 f a 1.0 f should also be placed as clos e to the device as is practical. 7 6 xb xa ianalog external crystal or reference clock. external crystal should be connect ed to these pins to use internal oscillator based reference. refer to family reference manual for interfacing to an external refere nce. external reference must be from a high-quality clock source (tcxo, ocxo). frequency of crys- tal or external clock is set by rate[1:0] pins. 8, 31, 20, 19 gnd gnd supply ground. must be connected to system ground. minimize the ground path impedance for optimal performance of this device. grounding these pins does not eliminate the requirement to ground the gnd pad on the bottom of the package. 11 15 rate0 rate1 i 3-level external crystal or reference clock rate. three level inputs that select the type and rate of external crystal or reference clock to be applied to the xa/xb port. refer to the family reference manual for settings. these pins have both a weak pull-up and a weak pull-down; they default to m. l setting corresponds to ground. m setting corresponds to v dd /2. h setting corresponds to v dd . some designs may require an external resistor voltage divider when driven by an active device that will tri-state. 16 17 ckin1+ ckin1? imulti clock input 1. differential input clock. this input can also be driven with a single- ended signal. input frequency range is 2 khz to 710 mhz. 12 13 ckin2+ ckin2? imulti clock input 2. differential input clock. this input can also be driven with a single- ended signal. input frequency range is 2 khz to 710 mhz. pin # pin name i/o signal level description note: internal register names are indi cated by underlined italics, e.g., int_pin . see si5324 register map.
si5324 rev. 1.0 61 18 lol o lvcmos pll loss of lock indicator. this pin functions as the active high pll loss of lock indicator if the lol_pin register bit is set to 1. 0 = pll locked. 1 = pll unlocked. if lol_pin = 0, this pin will tristate. active polarity is controlled by the lol_pol bit. the pll lock status will always be reflected in the lol_int read only register bit. 21 cs_ca i/o lvcmos input clock select/active clock indicator. input : in manual clock selection mode, this pin functions as the manual input clock selector if the cksel_pin is set to 1. 0 = select ckin1. 1 = select ckin2. if cksel_pin = 0, the cksel_reg register bit controls this func- tion and this input tristates. if conf igured for input, must be tied high or low. output : in automatic clock selection mode, this pin indicates which of the two input clocks is currently the active clock. if alarms exist on both clocks, ck_actv will indicate the last active clock that was used before entering the digital hold state. the ck_actv_pin reg- ister bit must be set to 1 to reflect the active clock status to the ck_actv output pin. 0 = ckin1 active input clock. 1 = ckin2 active input clock. if ck_actv_pin = 0, this pin will tristate. the ck_actv status will always be reflected in the ck_actv_reg read only register bit. 22 scl i lvcmos serial clock. this pin functions as the serial clock input for both spi and i 2 c modes. this pin has a weak pull-down. 23 sda_sdo i/o lvcmos serial data. in i 2 c control mode (cmode = 0), this pin functions as the bidirec- tional serial data port. in spi control mode (cmode = 1), th is pin functions as the serial data output. 25 24 a1 a0 ilvcmos serial port address. in i 2 c control mode (cmode = 0), thes e pins function as hardware controlled address bits. the i 2 c address is 1101 [a2] [a1] [a0]. in spi control mode (cmode = 1), these pins are ignored. these pins have a weak pull-down. pin # pin name i/o signal level description note: internal register names are indi cated by underlined italics, e.g., int_pin . see si5324 register map.
si5324 62 rev. 1.0 26 a2_s s ilvcmos serial port address/slave select. in i 2 c control mode (cmode = 0), this pin functions as a hardware controlled address bit [a2]. in spi control mode (cmode = 1), this pin functions as the slave select input. this pin has a weak pull-down. 27 sdi i lvcmos serial data in. in i 2 c control mode (cmode = 0), this pin is ignored. in spi control mode (cmode = 1), th is pin functions as the serial data input. this pin has a weak pull-down. 29 28 ckout1? ckout1+ omulti output clock 1. differential output clock with a frequency range of 8 khz to 1.4175 ghz. output signal format is selected by sfout1_reg register bits. ou tput is differential fo r lvpecl, lvds, and cml compatible modes. for cmos format, both output pins drive identi- cal single-ended clock outputs. 34 35 ckout2? ckout2+ omulti output clock 2. differential output clock with a frequency range of 8 khz to 1.4175 ghz. output signal format is selected by sfout2_reg register bits. ou tput is differential fo r lvpecl, lvds, and cml compatible modes. for cmos format, both output pins drive identi- cal single-ended clock outputs. 36 cmode i lvcmos control mode. selects i 2 c or spi control mode for the si5324. 0=i 2 c control mode 1 = spi control mode this pin must not be nc. tie either high or low. gnd pad gnd gnd supply ground pad. the ground pad must provide a low thermal and electrical impedance to a ground plane. pin # pin name i/o signal level description note: internal register names are indi cated by underlined italics, e.g., int_pin . see si5324 register map.
si5324 rev. 1.0 63 7. ordering guide ordering part number output clock frequency range package rohs6, pb-free temperature range si5324a-c-gm 2 khz?945 mhz 970?1134 mhz 1.213?1.417 ghz 36-lead 6 x 6 mm qfn yes ?40 to 85 c SI5324B-C-GM 2 khz?808 mhz 36-lead 6 x 6 mm qfn yes ?40 to 85 c si5324c-c-gm 2 khz?346 mhz 36-lead 6 x 6 mm qfn yes ?40 to 85 c si5324d-c-gm 2 khz?150 mhz 36-lead 6 x 6 mm qfn yes ?40 to 85 c note: add an r at the end of the device to denote tape and reel options.
si5324 64 rev. 1.0 table 13. product selection guide part number control number of inputs and outputs input frequency (mhz) * output frequency (mhz) * rms phase jitter (12khz?20mhz) pll bandwidth hitless switching free run mode package si5315 pin 1pll, 2 | 2 0.008?644 0.008?644 0.45 ps 60 hz to 8khz ? 6x6 mm 36-qfn si5316 pin 1pll, 2 | 1 19?710 19?710 0.3 ps 60 hz to 8khz 6x6 mm 36-qfn si5317 pin 1pll, 1 | 2 1?710 1?710 0.3 ps 60 hz to 8khz 6x6 mm 36-qfn si5319 i 2 c/spi 1pll, 1 | 1 0.002?710 0.002?1417 0.3 ps 60 hz to 8khz ? 6x6 mm 36-qfn si5323 pin 1pll, 2 | 2 0.008?707 0.008?1050 0.3 ps 60 hz to 8khz ? 6x6 mm 36-qfn si5324 i 2 c/spi 1pll, 2 | 2 0.002?710 0.002?1417 0.3 ps 4 hz to 525 hz ?? 6x6 mm 36-qfn si5326 i 2 c/spi 1pll, 2 | 2 0.002?710 0.002?1417 0.3 ps 60 hz to 8khz ?? 6x6 mm 36-qfn si5327 i 2 c/spi 1pll, 2 | 2 0.002?710 0.002?808 0.5 ps 60 hz to 8khz ?? 6x6 mm 36-qfn si5366 pin 1pll, 4 | 5 0.008?707 0.008?1050 0.3 ps 60 hz to 8khz ? 14x14 mm 100-tqfp si5368 i 2 c/spi 1pll, 4 | 5 0.002?710 0.002?1417 0.3 ps 60 hz to 8khz ?? 14x14 mm 100-tqfp si5369 i 2 c/spi 1pll, 4 | 5 0.002?710 0.002?1417 0.3 ps 4 hz to 525 hz ?? 14x14 mm 100-tqfp si5374 i 2 c 4pll, 8 | 8 0.002?710 0.002?808 0.4 ps 4 hz to 525 hz ?? 10x10 mm 80-bga si5375 i 2 c 4pll, 4 | 4 0.002?710 0.002?808 0.4 ps 60 hz to 8khz ?? 10x10 mm 80-bga *note: maximum input and output rates may be limited by speed rati ng of device. see each device?s data sheet for ordering information.
si5324 rev. 1.0 65 table 14. product selection guide (si5322/25/65/67) device clock inputs clock outputs ? p control max input freq (mhz) 1 max output frequency (mhz) jitter generation (12 khz ? 20 mhz) los hitless switching fos alarm lol alarm fsync realignment 36 lead 6 mm x 6 mm qfn 100 lead 14 x 14 mm tqfp 1.8, 2.5, 3.3 v operation 1.8, 2.5 v operation low jitter precision cloc k multipliers (wideband) si5322 2 2 707 1050 0.6 ps rms typ ?? ? si5325 2 2 ? 710 1400 0.6 ps rms typ ?? ? ? si5365 4 5 707 1050 0.6 ps rms typ ?? ? ? si5367 4 5 ? 710 1400 0.6 ps rms typ ?? ? ? notes: 1. maximum input and output rates may be limited by speed rati ng of device. see each device?s data sheet for ordering information. 2. requires external low-cost, fixed frequency 3rd overtone 114.285 mhz crystal or reference clock.
si5324 66 rev. 1.0 8. package outline: 36-pin qfn figure 9 illustrates the package details for the si5324. table 15 lists the values for the dimensions shown in the illustration. figure 9. 36-pin quad flat no-lead (qfn) table 15. package dimensions symbol millimeters symbol millimeters min nom max min nom max a 0.80 0.85 0.90 l 0.50 0.60 0.70 a1 0.00 0.02 0.05 ? ??12o b 0.18 0.25 0.30 aaa ? ? 0.10 d 6.00 bsc bbb ? ? 0.10 d2 3.95 4.10 4.25 ccc ? ? 0.08 e 0.50 bsc ddd ? ? 0.10 e 6.00 bsc eee ? ? 0.05 e2 3.95 4.10 4.25 notes: 1. all dimensions shown are in millimeters (mm) unless otherwise noted. 2. dimensioning and tolerancing per ansi y14.5m-1994. 3. this drawing conforms to jede c outline mo-220, variation vjjd. 4. recommended card reflow profile is per the je dec/ipc j-std-020 specif ication for small body components.
si5324 rev. 1.0 67 9. pcb land pattern figure 10. pcb land pattern diagram figure 11. ground pad recommended layout
si5324 68 rev. 1.0 table 16. pcb land pattern dimensions dimension min max e 0.50 bsc. e5 . 4 2 r e f . d5 . 4 2 r e f . e2 4.00 4.20 d2 4.00 4.20 ge 4.53 ? gd 4.53 ? x ? 0.28 y0 . 8 9 r e f . ze ? 6.31 zd ? 6.31 notes: general 1. all dimensions shown are in millimeters (mm) unless otherwise noted. 2. dimensioning and tolerancing is per the ansi y14.5m-1994 specification. 3. this land pattern design is based on ipc-sm-782 guidelines. 4. all dimensions shown are at maximum ma terial condition (mmc ). least material condition (lmc) is calculated based on a fabrication allowance of 0.05 mm. solder mask design 5. all metal pads are to be non-solder mask defined (nsmd). clearance between the solder mask and the metal pad is to be 60 m minimum, all the way around the pad. stencil design 6. a stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release. 7. the stencil thickness should be 0.125 mm (5 mils). 8. the ratio of stencil aperture to land pad size should be 1:1 for the perimeter pads. 9. a 4 x 4 array of 0.80 mm square openings on 1.05 mm pitch should be used for the center ground pad. card assembly 10. a no-clean, type-3 solder paste is recommended. 11. the recommended card reflow profile is per the jedec/ipc j-std-020 specification for small body components.
si5324 rev. 1.0 69 10. top marking 10.1. si5324 top marking (qfn) 10.2. top marking explanation mark method: laser font size: 0.80 mm right-justified line 1 marking: si5324q customer part number q = speed code: a, b, c, d see ordering guide for options. line 2 marking: c-gm c = product revision g = temperature range ?40 to 85 c (rohs6) m = qfn package line 3 marking: yywwrf yy = year ww = work week r = die revision f = internal code assigned by the assembly house. corresponds to the year and work week of the mold date. line 4 marking: pin 1 identifier circle = 0.75 mm diameter lower-left justified xxxx internal code
si5324 70 rev. 1.0 d ocument c hange l ist revision 0.1 to revision 0.2 ? updated rise/fall time values. ? updated minimum loop bw value. revision 0.2 to revision 0.25 ? updated features and applications. ? changed maximum loop bandwidth to 525 hz (global). ? updated pll performance specifications in table 1. ? added typical video phase noise plot and data. ? removed references to si5325. ? added note to register ckout_always_on on how to control output to output skew. ? added product selection guide to section ?7. ordering guide?. ? corrected typographical errors in table 1. ? updated typical phase noise performance page. ? updated functional description. ? added additional phase noise plots to section ?3.3. typical phase noise performance?. ? updated register map. ? revised device top mark. revision 0.25 to revision 0.3 ? changed any-rate to any-frequency ? changed table 2, ?absolute maximum ratings,? on page 6. ? added table 11, ?ckout_always_on and sq_ical truth table,? on page 24 ? added ?no bypass with cmos outputs? revision 0.3 to revision 1.0 ? expanded spec tables 1 and 2 to include all specifications in the reference manual. ? reordered sections to conform to data sheet quality convention. ? added t settle specification. ? corrected minor register map typos. ? minor changes to table 2. ? added maximum lock and se ttle times to table 3. ? added titles to tables 8, 9, and 10. ? updated/added selection guide tables 13 and 14. ? removed sleep from register map. ? added warning about mems reference oscillators to "3.1. external reference" on page 19.
si5324 rev. 1.0 71 n otes :
si5324 72 rev. 1.0 c ontact i nformation silicon laboratories inc. 400 west cesar chavez austin, tx 78701 tel: 1+(512) 416-8500 fax: 1+(512) 416-9669 toll free: 1+(877) 444-3032 please visit the silicon labs technical support web page: https://www.silabs.com/support/pages/contacttechnicalsupport.aspx and register to submit a technical support request. patent notice silicon labs invests in research and development to help our cust omers differentiate in the market with innovative low-power, s mall size, analog- intensive mixed-signal soluti ons. silicon labs' extensive patent portfolio is a testament to our unique approach and world-clas s engineering team. silicon laboratories and silicon labs are trademarks of silicon laboratories inc. other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders. the information in this document is believed to be accurate in all respects at the time of publ ication but is subject to change without notice. silicon laboratories assumes no responsibili ty for errors and omissions, and disclaim s responsibility for any consequences resu lting from the use of information included herein. additionally, silicon laboratories assumes no responsibility for the functioning of und escribed fea- tures or parameters. silicon laboratories reserves the right to make changes without further notice. silicon laboratories makes no warran- ty, representation or guarantee regarding t he suitability of its products for any par ticular purpose, nor does silicon laborato ries assume any liability arising out of the application or use of any product or circuit, and specif ically disclaims any and all liability, in cluding without limitation consequential or incidental damages . silicon laboratories products are not designed, intended, or authorized for use in applica tions intend- ed to support or sustain life, or for any other application in which the failure of the silicon laboratories product could crea te a situation where personal injury or death may occur. should buyer purchase or us e silicon laboratories products for any such unintended or unaut horized application, buyer shall indemnify and hold silicon laboratories harmle ss against all claims and damages.


▲Up To Search▲   

 
Price & Availability of SI5324B-C-GM

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X